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AN EXAMINATION OF WAKE OSCILLATOR MODELS 
FOR VORTEX-INDUCED VIBRATIONS 

INTRODUCTION 

Experimental results for vortex-induced vibrations of both pivoted and non-pivoted 
cylinders in a crossflow are presented in this report. Simplified models involving two ordinary 
differential equations are reviewed and shown to exhibit many of the features of the experimental 
results. Results of perturbation analysis of the simplified models are presented and used to 
explain some qualitative features, such as resonant frequency locking and hysteresis, in terms of 
bifurcations in the slow flow. 

In an experiment by Wei,1 a cylinder attached to a leaf spring is placed at the bottom of a 
flow tank (figure la). Since the leaf spring restricts the motion of the cylinder, the end attached 
to the spring remains fixed, and the cylinder can only pivot around that point at an angle 
transverse to the oncoming flowing water. Since the leaf spring also provides a restoring force, 
the cylinder tends to stay in the upright position if there are no external forces applied. As water 
flows past the cylinder, vortices are shed along the length of the cylinder on alternating sides, 
providing a periodic force on the cylinder. 

Figure 2 depicts data from the experiment by Wei. Note that for a range of flow speeds, 
the frequency of vortex shedding is the same as the cylinder oscillation frequency. This effect, 
called resonance lock-in, involves large-amplitude periodic motions of the cylinder near its 
natural frequency. Outside of this resonance region, the vortex-shedding frequency varies 
linearly with the flow velocity via the Strouhal relation: 

/.-f. a) 
where S is the Strouhal number, Fis the flow velocity, and D is the diameter of the cylinder. 

The features observed in Wei's pivoted cylinder experiment are similar to features 
observed in experiments where the entire cylinder is allowed to move transversely to the flow; 
figures la and lb illustrate the pivoted and non-pivoted cylinder systems, respectively. Figure 3 
shows the experimental results from a study by Feng2 of a non-pivoted cylinder in a crossflow of 
air. 

The data in figures 2 and 3 share many common features. Although the details of the 
fluid flow (including, for example, the coherent vortices) are expected to be different for these 
two types of experiments, the phenomenon of resonance lock-in is common to both. One feature 
present in the data in figure 2 that is not present in the figure 3 data is a part of the lock-in region 
where the frequency varies linearly with flow speed (labeled // and S = 0.18). This is because 
Wei's study uses water as the fluid, and Feng's study uses air as the fluid. The difference 



between these two experiments can be quantified by using the ratio of cylinder mass to the mass 
of the displaced fluid, which is an important quantity in the behavior of vortex-induced vibration 
experiments. This mass ratio is low for Wei's study using water and high for Feng's study using 
air. For more on the role of the mass ratio, see Govardhan and Williamson3 and Khalak and 
Williamson.4 For an overview of vortex-induced vibrations, see Blevins. 
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Figure la. Setup for Pivoted Cylinder Experiments 
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Figure lb. Setup for Non-Pivoted Cylinder Experiments 



Response Amplitude and Frequency 

1.5 

c 
LL 
W 

3 

0.5 

O Amplitude 1 (increasing flow speed) 
D Amplitude 2 (decreasing flow speed) 
® Shedding frequency 
* Oscillating and shedding frequency 

U/FnD 

Figure 2. Experimental Data for a Pivoted Cylinder in Water (Data from Wei1). 
(Note that both the amplitude of cylinder oscillation (lower portion of plot) and 

frequency (upper portion of plot) are displayed as functions of flow speed.) 
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Figure 3. Experimental Data for a Non-Pivoted Cylinder in an Air Flow 
(taken from Hartlen and Currie8) 



In the following section, a model will be analyzed that was originally derived to explain 
resonance lock-in in the non-pivoted experiment shown in figure lb. However, since pivoted 
(figure la) and non-pivoted (figure lb) experiments each exhibit resonance lock-in, the model 
may be used to explain some features of Wei's data (figure 2). 

ANALYSIS OF WAKE OSCILLATOR MODELS 

Semi-empirical models for vortex-induced vibrations of cylinders have been widely 
studied. A review article by Parkinson6 presents a good summary of these models. A van der 
Pol-type oscillator is commonly used to represent the time varying forces on the cylinder due to 
vortex shedding. The idea was first suggested by Bishop and Hassan.7 These types of models 
are known as wake oscillator models. Hartlen and Currie8 first proposed the following model in 
non-dimensionalized form: 

x + 2Cx + x = aa>2y, (2) 

y + co2y-acoy + — y3 - bx, (3) 
CO 

where x is the dimensionless cylinder displacement andjy is a representative fluid property, for 
example, pressure or lift coefficient. The dots represent differentiation with respect to time t, and 
co is proportional to the flow speed of the system, of which a, C y, a, and b are parameters. 
Here the cylinder and its elastic restraint are modeled by a damped linear oscillator (equation 
(2)), and the periodic vortex shedding of the fluid is modeled by a limit cycle oscillator (equation 
(3)). These two ordinary differential equations are assumed to be linearly coupled. Note that the 
fluid drag force on the rod x\x\ has been omitted. 

Figure 4 shows the results of numerically integrating equations (2) and (3) using the 
original parameter values (equation (4)) in the study by Hartlen and Currie. These parameter 
values correspond to the experimental setup in figure lb for the data in figure 3: 

C = 0.0015, « = 0.02, y = -, 0 = 0.002, and b = 0A. (4) 

Figure 4 was obtained by numerically integrating equations (2) and (3) for a long time 
interval until most of the transients expired and the remaining steady-state motion was periodic. 
Comparing figure 4 with figures 2 and 3, it can be seen that some of the features observed in 
these experiments are reproduced by the Hartlen-Currie model. A large cylinder-oscillation 
amplitude resonance region occurs when the vortex-shedding frequency is near the natural 
frequency of the cylinder. Also, the frequency of oscillation in this region is nearly constant at a 
value close to the natural frequency of the cylinder. 



Amplitude response of Hartien-Currie model 

Figure 4. Numerical Integration of Harden and Currie Model (Note that model exhibits 
some of the features present in experimental data in figures 2 and 3.) 



Various methods have been used to analyze the dynamics of wake oscillator models. 
Poore and Al-Rawi9 have studied the Harden and Currie model in terms of Hopf bifurcations. 

.10 Langford and Zhan   performed a more detailed study on a similar wake oscillator model also 
11   19 

using the Hopf bifurcation theory. Corless and Parkinson '    have studied the Harden and 
Currie model using multiple scales perturbation techniques around the lock-in region. Using a 
variety of methods, Berger 13'14 has studied a similar model with an additional cubic damping 
term in equation (2) and a cubic x coupling term in equation (3). 

Figure 5 is an illustration of the amplitude and frequency response obtained from analysis 
of the Harden and Currie model using the original parameter values of equation (4). Features 
have been intentionally exaggerated to make them more visible. Arrows show jumps in 
amplitude and frequency occurring in response to sweeps of parameter co (proportional to flow 
velocity), resulting in hysteresis. These jumps occur because of changes in stability and 
associated bifurcations of periodic motions. Figure 5 was obtained by studying the Harden and 
Currie model using multiple scales analysis and bifurcation analysis of the resulting slow-flow 
equations; see the appendix for details. 
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Figure 5. Amplitude and Frequency Response of Wake Oscillator Model (Horizontal axis co 
is proportional to flow velocity. Vertical arrows represent jumps in response to slow sweeps in 

flow velocity and result in hysteresis. Solid lines represent stable branches of periodic 
motions, and dotted lines represent unstable branches.) 



Corless15 has studied the possible response diagrams for different parameter values in the 
Harden and Currie model. This analysis uses the multiple scales method and is restricted to 
small parameter values near the 1:1 resonance. The analysis also is restricted to examination of 
periodic motions and does not examine quasi-periodic motions or the possibility of chaos in the 
system. 

CONCLUSIONS 

As shown in this report, simplified models of vortex-induced vibrations have been 
extensively examined in the literature. Nevertheless, there are two areas in which further 
research is needed: 

1. Although a great deal of attention has been paid to periodic motions, very little 
research has been focused on more complicated dynamical behaviors, such as quasi-periodic 
motions and chaos. 

2. Recent experiments have shown that an important parameter affecting the qualitative 
behavior of vortex-induced vibrations is the ratio of cylinder mass to displaced fluid mass. 
Although wake oscillator models have successfully described experimental results for large mass 
ratios, little has been done to model systems with small mass ratios. 



APPENDIX 
RESULTS OF FREQUENCY AND AMPLITUDE RESPONSE 

The results of the amplitude and frequency response obtained from analysis of the 
Hartlen and Currie model using the Hopf bifurcation theory and perturbation methods are 
complementary. The Hopf bifurcation theory gives approximations that are valid close to the 
origin; perturbation methods give approximations that are valid for small values of 
a, C y, a, b, and co«l (near the 1:1 resonance of the system). The results from perturbation 
methods allow the amplitude and frequency response of a system to be determined for a given set 
of parameter values. Analysis has shown that the dynamics of the system involve Hopf 
bifurcations from the origin where limit-cycle oscillations are created and destroyed. See Poore 
and Al-Rawi9 for more on the Hopf bifurcation analysis. 

In figure 5, points A and B correspond to Hopf bifurcations of the origin where limit 
cycles are created. Point C corresponds to a saddle-node bifurcation of cycles where the stability 
of the limit cycle changes along the branch. Point D corresponds to a torus bifurcation where a 
quasi-periodic motion is created. In the slow flow at point D, a subcritical Hopf bifurcation 
occurs where an unstable limit cycle (quasi-periodic motion in original equation) is created as co 
increases and the stability of the equilibria (limit cycle in original equation) changes. Note that 
between points C and D there are two possible stable solutions. The arrows show the jumps in a 
hysteretic loop for increasing and decreasing flow speed (represented by co ). For a more 
detailed bifurcation analysis, see Guckenheimer and Holmes.16 

A calculation similar to the one performed by Corless and Parkinson is presented below. 
To apply the method of multiple scales to the Hartlen and Currie model, a rescaling of equations 
(2) and (3) must first take place: 

s2a              *          Act 
a = e,  2C = eß,  a = —-,  b = Y0b,  y = j, 

M> 3F0 

and 

y = Y0y,  x = ex  co2 -1 + eS, (A-l) 

where s is considered a small perturbation parameter and ö is a measure of detuning off the 1:1 
resonance. Substituting equations (A-l) into equations (2) and (3) and dropping the hats on 
terms gives 

x + x = e(-ßx + ay)+o(e2), (A-2) 

and 

y + y = e(-Sy + y\l-U2) + bx)+o(s2). (A-3) 
V     3     ) 

A-l 



Applying the method of multiple scales to equations (A-2) and (A-3) gives the following 
slow-flow equations: 

dR       aRy sinM   ßRx 

dt] 
(A-4) 

dRy =   Rl   |  
Ry   ,  bRx COS (f) (A5) 

£*/     " 2      2 2 

and 

fify) aÄ  cos (^ )   bRx sin (9) ) s 
<#7 2Ä, 2/2, 2 

(A-6) 

where JC«7?X cos(f-0j, v«i^ cos(<f-#J, (p = 8y-6x, £ = <ot, and 7/ = eA 

For more on the method of multiple scales, see Nayfeh and Mook17 and Rand and 
Armbruster.18 Equilibria in the slow flow correspond to periodic motions of the original system. 
Equations (A-4) - (A-6) can be combined to produce a single polynomial in Rx and the 
parameters a, b, ß, and S. The right-hand sides of equations (A-4) and (A-5) are set to zero, 
and then solved for sin <p and cos#>. These expressions for sin g> and cos cp are then substituted 

back into the right-hand side of equation (A-6) and sin2 (p + cos2 <p = 1, producing two equations 
each involving Rx, Ry and the parameters a, b, ß, and «5. These two equations can then be 
combined, eliminating Ry to give the following polynomial: 

K6R
6

X + KX + K2Rl +K0=0, (A-7) 

where 

K6 = bY, 

K4 = abß2(4ßS-2ö-3ab), 

K2 = a2 (ßö* - abS3 + 2ß3ö2 - 2ß?ö2 + ß ö2 - 5ab ß2S 

+ abßS +ß5-2ß*+ß3 + 3a2 b2 ß), 

and 

K0 = -et (ßS2 - abßS -abö+ß3-2ß2+ß + a2b2). 

A-2 



Equation (A-7) produces the curves of the amplitude plot in figure 5. Determining the 
stability of the curves involves linearizing equations (A-4) - (A-6) around the equilibria and 
examining the eigenvalues of the system. The saddle-node bifurcation at point C occurs when an 
equilibrium point has a zero eigenvalue. The Hopf bifurcation at point D occurs when an 
equilibrium point has a pair of pure imaginary eigenvalues. These calculations are 
straightforward but result in lengthy expressions that have been omitted. In a similar fashion, a 
polynomial for the lock-in frequency can also be calculated, producing the second plot in figure 
5. 
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